Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 573
Filter
1.
Trop Anim Health Prod ; 56(3): 121, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607462

ABSTRACT

The objective was to evaluate the effect of detoxified castor bean replacing soybean meal in the concentrate diet or as nitrogen organic fertilizer replacing urea on intake and nutrient digestibility, blood parameters and productive performance of sheep finished on irrigated Tamani grass pasture under continuous stocking and variable stocking rate. The treatments were two concentrate diets: standard (ground corn and soybean meal) and alternative diet (ground corn and detoxified castor bean cake), and two nitrogen fertilizers: chemical (urea) and organic (fresh castor bean cake). The randomized complete block design was used in a 2 × 2 factorial arrangement with four replications (500 m² paddocks). Four sheep (2 castrated males and 2 females) were distributed in each experimental unit, totaling 64 animals with an average initial weight of 19.42 ± 3.6 kg. No effects (P > 0.05) were observed on the variables inherent to the evaluation of the pasture. The average stocking rate (SR) among treatments was 85.50 sheep/ha, equivalent to 9.87 Animal Units (AU)/ha. The alternative diet presented lower dry matter digestibility (62.71%), with no negative effects on nutrient intake and kidney parameters. Animals fed the standard and alternative diet showed average daily gain of 103.75 and 86.76 g/day, respectively. A finishing period of up to 100 days is recommended for sheep selected for production systems in semi-arid regions managed intensively on pasture. Detoxified castor bean cake did not alter nutrient intake, liver and kidney parameters of the sheep and can be used in pasture-based sheep farming.


Subject(s)
Fertilizers , Ricinus communis , Female , Male , Animals , Sheep , Dietary Supplements , Glycine max , Nitrogen , Urea
2.
Int Immunopharmacol ; 132: 111986, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38574703

ABSTRACT

BACKGROUND: Ricin is a potential biowarfare agent. It is a phytotoxin isolated from castor seeds. At present there is no antidote available for ricin poisoning, patients only get supportive treatment based on their symptoms. This highlights the importance of early detection to avoid severity of accidents and reduce the risk factor. Considering this, our study aimed to develop a highly sensitive and specific sandwich ELISA for the detection of ricin. METHODS: Ricin was purified from castor seeds. Anti-ricin polyclonal and monoclonal antibodies were generated from rabbit antisera and hybridoma cell (1H6F1) supernatant using a protein A/G column. Antibody titer estimation was done using Indirect ELISA. A streptavidin-biotin-based sandwich ELISA was developed and the limit of detection (LOD), linear range, intra and inter-assay coefficient of variation (CV), and cross-reactivity with other similar toxins were determined. Interference of human plasma samples spiked with ricin was also checked. RESULTS: The LOD of the ELISA was found to be 0.45 ng/ml, with a linear range of 0.90-62 ng/ml, intra and inter-assay CV ranged from 3.34 % to 5 % and 5.17 % to 10.80 % respectively. The assay was not cross-reactive with other similar ribosome-inactivating protein (RIP) toxins. Ricin was detected in spiked plasma samples. CONCLUSION: The developed assay is highly sensitive and specific for detecting ricin and is not cross-reactive with other similar types of toxins. The assay can detect ricin in spiked plasma samples, so it has the potential to be used for the analysis of clinical samples after ricin poisoning.


Subject(s)
Biotin , Enzyme-Linked Immunosorbent Assay , Ricin , Streptavidin , Ricin/immunology , Ricin/analysis , Enzyme-Linked Immunosorbent Assay/methods , Animals , Humans , Rabbits , Limit of Detection , Antibodies, Monoclonal/immunology , Cross Reactions , Ricinus communis/immunology , Mice , Reproducibility of Results , Seeds/immunology , Seeds/chemistry
3.
Trop Anim Health Prod ; 56(3): 111, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520485

ABSTRACT

This study evaluated levels of replacement of soybean meal by castor bean meal in the finishing crossbred steers on Brachiaria brizantha cv. Marandu pasture during the rainy-dry transition period. Forty Holstein-Zebu crossbred steers with an average initial weight of 395.93 ± 10 kg were randomly allocated to four treatment groups that were supplemented with concentrate levels of replacing (0, 290, 613, and 903 g/kg DM of the supplement; at 0.4% body weight [BW]). The experimental period was 120 days. A completely randomized experimental design was adopted; with regression analysis using the computational software package (SAS 9.2, USA). Intake and digestibility of dry matter (DM) and nutrients and animal performance were evaluated. The replacement levels did not influence (P > 0.05) the intakes of DM (kg/day), organic matter (OM, kg/day), neutral detergent fiber (NDF, kg/day and %BW), non-fibrous carbohydrates (NFC, kg/day), or total digestible nutrients (kg/day). However, the intake of crude protein (CP) and ether extract (EE, kg/day) decreased as the replacement levels were increased (P < 0.05). The digestibility of DM, OM, NDF, and EE did not change, whereas CP digestibility decreased linearly and NFC digestibility increased linearly (P < 0.05). The replacement levels did not affect (P > 0.05) final body weight, average daily gain, feed conversion, and carcass yield. Castor bean meal can replace up to 903 g/kg DM of soybean meal in the composition of the supplement without compromising the performance of steers on Marandu pasture during the rainy-dry transition period.


Subject(s)
Ricinus communis , Animals , Digestion , Dietary Supplements/analysis , Carbohydrates , Proteins , Body Weight , Animal Feed/analysis , Diet/veterinary
4.
Sci Rep ; 14(1): 5013, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424457

ABSTRACT

Ricinus communis is one of the most important oilseed plants with many medicinal and industrial applications. Variation in 30 genotypes of castor bean collected from different regions of the world was evaluated for two consecutive years and the difference in seed production with two different reproductive modes (including apomixis and open-pollination) was compared based on yield components, agronomic traits, and phytochemical properties. Results of data analysis demonstrated that castor bean has the ability for a wide range of apomixis for seed production and the highest percentages of apomixis ability in the first and second years were 86.3% and 92.31%, respectively. Apomixis ability had a high positive correlation with yield components, seed oil content, and the amount of leaf rutin. Two genotypes from Brazil and Syria revealed the highest phenolic content in the first and second years, respectively. In addition, the Afghanistan genotype in two modes of apomixis and open-pollination in the first year and the Syria and Yazd genotypes in apomixis and open-pollination modes, respectively, in the second year showed the highest content of seed fatty acids. It is possible to maintain superior genotypes of castor bean in terms of phytochemical traits, yield, and oil quality through apomixis reproduction.


Subject(s)
Apomixis , Ricinus communis , Ricinus communis/genetics , Seeds/genetics , Fatty Acids , Phytochemicals
5.
Plant Physiol Biochem ; 207: 108372, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228015

ABSTRACT

Castor (Ricinus communis) is a relevant industrial oilseed feedstock for many industrial applications, being globally mainly cultivated by smallholder farmers in semiarid areas, where abiotic stresses predominate. Therefore, susceptible to generating reactive oxygen species (ROS) and subsequent oxidative stress, compromising cell metabolism upon seed imbibition and germination, seedling and crop establishment, and yield. The present study evaluated the consequences of water restriction by Polyethylene glycol (PEG) and Sodium chloride (NaCl) on cell cycle and metabolism reactivation on germinability, seedling growth, and vigor parameters in 2 commercial castor genotypes (Nordestina and Paraguaçu). PEG water restriction inhibited germination completely at -0.23 MPa or higher, presumably due to reduced oxygen availability. The restrictive effects of NaCl saline stress on germination were observed only from -0.46 MPa onwards, affecting dry mass accumulation and the production of normal seedlings. In general, superoxide dismutase (SOD) activity increased in NaCl -0.23 MPa, whereas its modulation during the onset of imbibition (24h) seemed to depend on its initial levels in dry seeds in a genotype-specific manner, therefore, resulting in the higher stress tolerance of Nordestina compared to Paraguaçu. Overall, results show that Castor germination and seedling development are more sensitive to the restrictive effects of PEG than NaCl at similar osmotic potentials, contributing to a better understanding of the responses to water restriction stresses by different Castor genotypes. Ultimately, SOD may constitute a potential marker for characterizing castor genotypes in stressful situations during germination, early seedling, and crop establishment, and a target for breeding for Castor-improved stress tolerance.


Subject(s)
Ricinus communis , Seedlings , Seedlings/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Ricinus communis/genetics , Polyethylene Glycols/pharmacology , Polyethylene Glycols/metabolism , Germination , Cell Cycle , Seeds/metabolism , Water/metabolism , Superoxide Dismutase/metabolism
6.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256130

ABSTRACT

The length of internodes plays a crucial role in determining the height of the castor plant (Ricinus communis L.). However, the specific mechanisms underlying internode elongation, particularly in the main stem of the castor plant, remain uncertain. To further investigate this, we conducted a study focusing on the internode tissue of the dwarf castor variety 071113, comparing it with the control high-stalk Zhuansihao. Our study included a cytological observation, physiological measurement, transcriptome sequencing, and metabolic determination. Our integrated findings reveal that the dwarf variety 071113 undergoes an earlier lignification development in the main stem and has a more active lignin synthesis pathway during internode intermediate development. In addition, the dwarf variety exhibited lower levels of the plant hormone indole-3-acetic acid (IAA), which had an impact on the development process. Furthermore, we identified specific enzymes and regulators that were enriched in the pathways of the cell cycle, auxin signal transduction, and secondary cell wall synthesis. Using these findings, we developed a model that explained the intermediate secondary growth observed in castor internode elongation and enhanced our comprehension of the dwarfing mechanism of the 071113 variety. This research provides a theoretical groundwork for the future breeding of dwarf castor varieties.


Subject(s)
Ricinus communis , Ricinus communis/genetics , Transcriptome , Plant Breeding , Ricinus , Metabolome , Castor Oil
7.
BMB Rep ; 57(2): 86-91, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38053289

ABSTRACT

The fatty acids content of castor (Ricinus communis L.) seed oil is 80-90% ricinoleic acid, which is a hydroxy fatty acid (HFA). The structures and functional groups of HFAs are different from those of common fatty acids and are useful for various industrial applications. However, castor seeds contain the toxin ricin and an allergenic protein, which limit their cultivation. Accordingly, many researchers are conducting studies to enhance the production of HFAs in Arabidopsis thaliana, a model plant for oil crops. Oleate 12-hydroxylase from castor (RcFAH12), which synthesizes HFA (18:1-OH), was transformed into an Arabidopsis fae1 mutant, resulting in the CL37 line producing a maximum of 17% HFA content. In addition, castor phospholipid:diacylglycerol acyltransferase 1-2 (RcPDAT1-2), which catalyzes the production of triacylglycerol by transferring HFA from phosphatidylcholine to diacylglycerol, was transformed into the CL37 line to develop a P327 line that produces 25% HFA. In this study, we investigated changes in HFA content when endogenous Arabidopsis PDAT1 (AtPDAT1) of the P327 line was edited using the CRISPR/Cas9 technique. The successful mutation resulted in three independent lines with different mutation patterns, which were transmitted until the T4 generation. Fatty acid analysis of the seeds showed that HFA content decreased in all three mutant lines. These findings indicate that AtPDAT1 as well as RcPDAT1-2 in the P327 line are involved in transferring and increasing HFAs to triacylglycerol. [BMB Reports 2024; 57(2): 86-91].


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ricinus communis , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Editing , Fatty Acids/metabolism , Triglycerides/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Acyltransferases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
8.
Trop Anim Health Prod ; 55(6): 364, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857872

ABSTRACT

The objective of this study was to examine the effect of replacing soybean meal (SBM) with detoxified castor seed meal (DCM) on the intake, digestibility, feeding behavior, and performance of pasture-finished (rainy season) steers supplemented with concentrate at 0.4% of their body weight. Forty ½ Holstein + ½ Zebu steers (initial weight: 283.3 ± 36.3 kg) were allocated to four treatments in a completely randomized experimental design. Treatments consisted of diets in which DCM replaced 0, 30, 60, and 90% of SBM in the supplement dry matter (DM). The steers were finished on an Urochloa brizantha pasture and the experiment lasted 112 days. Replacing SBM with DCM did not influence (P > 0.05) the intake or apparent digestibility of DM, crude protein, or neutral detergent insoluble fiber of the animals. Grazing time increased (P < 005), whereas the intake and rumination efficiencies of the steers did not change (P > 0.05) with the substitution. The replacement of SBM with DCM in the supplement fed to the steers also did not influence (P > 0.05) their final weight, average daily gain, or feed conversion (P > 0.05). We recommend replacing up to 90% (DM basis) of SBM with DCM in the concentrate supplement of steers grazing on Urochloa brizantha pasture during rainy season while supplemented with concentrate at 0.4% of their body weight.


Subject(s)
Flour , Ricinus communis , Cattle , Animals , Seasons , Digestion , Diet/veterinary , Glycine max , Body Weight , Seeds , Animal Feed/analysis
9.
New Phytol ; 240(5): 1868-1882, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717216

ABSTRACT

Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ricinus communis , Endosperm/genetics , Endosperm/metabolism , Ricinus communis/genetics , Ricinus communis/metabolism , Arabidopsis/genetics , Epigenesis, Genetic , Genomic Imprinting , DNA Methylation/genetics , Seeds/metabolism , Alleles , Gene Expression Regulation, Plant , DNA (Cytosine-5-)-Methyltransferases/genetics , Arabidopsis Proteins/metabolism
10.
PLoS One ; 18(8): e0289935, 2023.
Article in English | MEDLINE | ID: mdl-37585451

ABSTRACT

Root-knot nematodes (Meloidogyne spp.) are dangerous parasites of many crops worldwide. The threat of chemical nematicides has led to increasing interest in studying the inhibitory effects of organic amendments and bacteria on plant-parasitic nematodes, but their combination has been less studied. One laboratory and four glasshouse experiments were conducted to study the effect on M. javanica of animal manure, common vermicompost, shrimp shells, chitosan, compost and vermicompost from castor bean, chinaberry and arugula, and the combination of arugula vermicompost with some bacteria, isolated from vermicompost or earthworms. The extract of arugula compost and vermicompost, common vermicompost and composts from castor bean and chinaberry reduced nematode egg hatch by 12-32% and caused 13-40% mortality of second-stage juveniles in vitro. Soil amendments with the combination vermicompost of arugula + Pseudomonas. resinovorans + Sphingobacterium daejeonense + chitosan significantly increased the yield of infected tomato plants and reduced nematode reproduction factor by 63.1-76.6%. Comparison of chemical properties showed that arugula vermicompost had lower pH, EC, and C/N ratio than arugula compost. Metagenomics analysis showed that Bacillus, Geodermatophilus, Thermomonas, Lewinella, Pseudolabrys and Erythrobacter were the major bacterial genera in the vermicompost of arugula. Metagenomics analysis confirmed the presence of chitinolytic, detoxifying and PGPR bacteria in the vermicompost of arugula. The combination of arugula vermicompost + chitosan + P. resinovorans + S. daejeonense could be an environmentally friendly approach to control M. javanica.


Subject(s)
Bacillus , Chitosan , Ricinus communis , Tylenchoidea , Animals , Chitin , Chitosan/pharmacology , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry
11.
J Texture Stud ; 54(6): 902-912, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37407436

ABSTRACT

Castor seed oil, as an important biomass fuel, has attracted extensive attention worldwide due to inclusive applications. Castor seed screw mechanical extraction is in fact seed shear damage and oil output. Seed shearing mechanism has been investigated with a developed tribometer. Influences of pressing load, shearing speed, roller roughness were analyzed. Castor seed structural damage was in-situ observed with optical microscope, and in-depth analyzed with Scanning Electron Microscopy and Energy Dispersive Spectroscopy. The results reveal that shear interaction can be divided into three stages: coat damage, transition shearing and endosperm oil output. Seed shear mechanism includes coat peeling, endosperm plowing, tissue transferring and oil lubrication. High pressing load leads to more damage of coat and endosperm, causing more oil to flow out. With shearing speed increasing, coat is easily peeled, obvious endosperm shear plowing and oil lubrication happened in contact area. Coat damage by high roughness leads more oil output. Castor oil enters the contact area and work as lubricant, leading to the decrease of friction resistance.


Subject(s)
Ricinus communis , Castor Oil , Seeds
12.
Gene ; 883: 147668, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37500024

ABSTRACT

Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes. In this context, gene families related to abscisic acid (ABA) signaling play a crucial role in developmental and environmental adaptation processes of plants to drought stress. However, the families that function as the core components of ABA signaling, as well as genes networks related to drought response, are not well understood in castor bean. In this study 7 RcPYL, 63 RcPP2C, and 6 RcSnRK2 genes were identified in castor bean genome, which was further supported by chromosomal distribution, gene structure, evolutionary relationships, and conserved motif analyses. The castor bean general expression profile was investigated by RNAseq in root and leaf tissues in response to drought stress. These analyses allowed the identification of genes differentially expressed, including genes from the ABA signaling core, genes related to photosynthesis, cell wall, energy transduction, antioxidant response, and transcription factors. These analyses provide new insights into the core components of ABA signaling in castor bean, allow the identification of several molecular responses associated with the high physiological adaptation of castor bean to drought stress, and contribute to the identification of candidate genes for genetic improvement.


Subject(s)
Ricinus communis , Ricinus communis/genetics , Ricinus communis/metabolism , Ricinus/genetics , Ricinus/metabolism , Gene Regulatory Networks , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism
13.
BMC Res Notes ; 16(1): 140, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415245

ABSTRACT

OBJECTIVE: The purpose of this study was to develop a method for the isolation, culture, and PEG-mediated protoplast transfection from leaves of in vitro-grown plants of Ricinus communis. RESULTS: Factors such as the enzymatic composition and the incubation time were evaluated. The enzymatic solution, containing 1.6% Cellulase-R10 and 0.8% Macerozyme-R10, with 16 h of incubation, was the best condition to achieve a high protoplast yield (481.16 × 104 protoplasts/g FW) with a high percentage of viability (95%). The combination and concentration of enzymes have been shown to affect the protoplast isolation efficiency significantly. Furthermore, we found that a higher number of protoplasts (8.5 × 105 protoplast/g FW) was obtained at a longer incubation time, but their viability decreased. We obtained a simple and efficient protocol to isolate protoplast from Ricinus communis leaves and culture. A PEG-mediated protoplast transfection protocol was also established to introduce plasmid DNA into Ricinus communis genotypes cultivated in Colombia. Thus, strengthening advances in the genetic improvement processes for this crop are presented.


Subject(s)
Ricinus communis , Ricinus communis/genetics , Protoplasts , Ricinus/genetics , Plant Leaves/genetics , Transfection
14.
Sud Med Ekspert ; 66(3): 34-39, 2023.
Article in Russian | MEDLINE | ID: mdl-37192457

ABSTRACT

THE AIM OF THE STUDY: Is to suggest the method of ricin determination in biological liquids during forensic medical and chemicotoxicological examination. This research describes the optimal conditions of sample processing of biological liquids, allowing to extract the components (ricinine and ricinoleic acid) of castor seeds. The recommended analysis conditions allow to perform research for 15 minutes by high resolution mass spectrometry method combined with high-value liquid chromatography on a chromato-mass spectrometer to detect ricinine and ricinoleic acid. The chromatographic (retention time) and mass-spectrometric parameters (mass spectra) were established for the exact high-quality determination of ricinine and ricinoleic acid.


Subject(s)
Ricin , Ricinus communis , Ricin/toxicity , Ricin/analysis , Ricin/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Ricinus communis/chemistry , Forensic Medicine
15.
Plant Physiol ; 192(2): 1028-1045, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36883668

ABSTRACT

Castor (Ricinus communis L.) is a dicotyledonous oilseed crop that can have either spineless or spiny capsules. Spines are protuberant structures that differ from thorns or prickles. The developmental regulatory mechanisms governing spine formation in castor or other plants have remained largely unknown. Herein, using map-based cloning in 2 independent F2 populations, F2-LYY5/DL01 and F2-LYY9/DL01, we identified the RcMYB106 (myb domain protein 106) transcription factor as a key regulator of capsule spine development in castor. Haplotype analyses demonstrated that either a 4,353-bp deletion in the promoter or a single nucleotide polymorphism leading to a premature stop codon in the RcMYB106 gene could cause the spineless capsule phenotype in castor. Results of our experiments indicated that RcMYB106 might target the downstream gene RcWIN1 (WAX INDUCER1), which encodes an ethylene response factor known to be involved in trichome formation in Arabidopsis (Arabidopsis thaliana) to control capsule spine development in castor. This hypothesis, however, remains to be further tested. Nevertheless, our study reveals a potential molecular regulatory mechanism underlying the spine capsule trait in a nonmodel plant species.


Subject(s)
Castor Oil , Ricinus communis , Castor Oil/metabolism , Ricinus/genetics , Ricinus/metabolism , Gene Expression Regulation, Plant , Ricinus communis/genetics , Ricinus communis/metabolism
16.
Sci Rep ; 13(1): 4606, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944764

ABSTRACT

Energy scarcity and conventional energy problems are the main reason of finding a renewable source of energy which is cheap and environmental friendly, therefore, biodiesel production is one of the most promising solutions of this problem. Also, Egyptian castor is one of the most important crops for oil production compared with other commonly used oil crops. The main aim of this study is to enhance the production of bio-oil from Egyptian castor seeds by using microwave and ultrasonic as pre-treatments. To achieve that, the effects of extraction screw speed (20, 40 and 60 rpm) and temperature (100, 150, 200 and 250 °C) on oil extraction yield and quality, extraction energy requirements and extraction time and were studied. Also, the effect of pretreatment conditions of microwave at three levels of power (Low, Med and High) and different times (1, 2 and 3 min) and pretreatment condition ultrasonic with different temperatures (40, 60 and 80 °C) and different times (15, 30 and 45 min) for castor seeds before extraction with the optimum condition of the screw press on oil extraction yield from castor seeds, extraction energy, extraction time and quality of the oil extracted. The results indicate that the optimum conditions oil extraction by screw press were 200 °C extraction temperature and 60 rpm screw speed. It could be seen that the extraction oil yield, extraction energy requirements and extraction time were 35.59%, 18.68 and 1.86 min, respectively. Microwave pretreatments had better on oil yield and energy required for extraction compared to ultrasonic pretreatments, where, microwave pretreatments recorded high oil yield and lower energy requirements compared to the ultrasonic pretreatments. Oil yield ranged from 32.67 to 37.41% compared to 13.29 to 39.83% in literature. The time required for extraction was ranged from 1.77 to 2.00 and 1.79 to 2.21 min for microwave and ultrasonic pretreatments, respectively. The pretreatment improved properties of the extracted oil.


Subject(s)
Ricinus communis , Ultrasonics , Microwaves , Egypt , Plant Oils , Seeds
17.
Appl Biochem Biotechnol ; 195(2): 1297-1318, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36484918

ABSTRACT

The rise in oil prices, global warming, and the depletion of nonrenewable resources have led researchers to study sustainable alternatives to increasing energy demand. The autocatalysis from castor oil and castor lipases to produce biodiesel can be an excellent alternative to reduce the production costs and avoid the drawbacks of chemical transesterification. This study aimed to evaluate the catalytic activity of castor bean lipase extract (CBLE) on three vegetable oils hydrolysis, to obtain and enhance biodiesel yield by an autocatalysis from castor oil and CBLE. Furthermore, the enzymatic biodiesel physicochemical quality was analyzed. The enzymatic activity for olive oil was 76.12 U, 90.06 U for commercial castor oil, and 75.60 U in raw castor oil. The hydrolysis percentages were high at 25 °C, pH 4.5, for 4 h with 97.18% for olive oil, 98.86%, and 96.19% for commercial and raw castor oil, respectively. The CBLE catalyzed the transesterification reaction on castor oil to obtain 82.91% biodiesel yield under the selected conditions of 20% lipase loading, 1:6 oil/methanol molar ratio, and 10% buffer pH 4.5, 37 °C for 8 h. The castor biodiesel quality satisfied the ASTM-D6751 (USA) and EN-14214 (European Union) values, except for the density, viscosity, and moisture, as expected for this kind of biodiesel.


Subject(s)
Castor Oil , Ricinus communis , Ricinus communis/metabolism , Biofuels/analysis , Lipase/metabolism , Olive Oil , Plant Oils , Esterification , Catalysis , Plant Extracts
18.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203263

ABSTRACT

Castor (Ricinus communis L.) seeds produce abundant ricinoleic acid during seed maturation, which is important for plant development and human demands. Ricinoleic acid, as a unique hydroxy fatty acid (HFA), possesses a distinct bond structure that could be used as a substitute for fossil fuels. Here, we identified all homologous genes related to glycolysis, hydroxy fatty acid biosynthesis, and triacylglycerol (TAG) accumulation in castor seeds. Furthermore, we investigated their expression patterns globally during five seed development stages. We characterized a total of 66 genes involved in the glycolysis pathway, with the majority exhibiting higher expression levels during the early stage of castor bean seed development. This metabolic process provided abundant acetyl-CoA for fatty acid (FA) biosynthesis. Subsequently, we identified 82 genes involved in the processes of de novo FA biosynthesis and TAG assembly, with the majority exhibiting high expression levels during the middle or late stages. In addition, we examined the expression patterns of the transcription factors involved in carbohydrate and oil metabolism. For instance, RcMYB73 and RcERF72 exhibited high expression levels during the early stage, whereas RcWRI1, RcABI3, and RcbZIP67 showed relatively higher expression levels during the middle and late stages, indicating their crucial roles in seed development and oil accumulation. Our study suggests that the high HFA production in castor seeds is attributed to the interaction of multiple genes from sugar transportation to lipid droplet packaging. Therefore, this research comprehensively characterizes all the genes related to glycolysis, fatty acid biosynthesis, and triacylglycerol (TAG) accumulation in the castor and provides novel insight into exploring the genetic mechanisms underlying seed oil accumulation in the endosperm of castor beans.


Subject(s)
Ricinus communis , Humans , Ricinus communis/genetics , Seeds/genetics , Castor Oil/genetics , Fatty Acids/genetics , Triglycerides
19.
Trop Anim Health Prod ; 54(5): 300, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36107263

ABSTRACT

The purpose of this study was to evaluate castor bean cake as alternative input in the control of gastrointestinal parasites in sheep raised on irrigated pasture under continuous stocking. The treatments consisted of sheep supplemented with standard diet and pasture fertilized with urea; sheep supplemented with alternative diet and pasture fertilized with urea; sheep supplemented with standard diet and pasture fertilized with in natura castor bean cake; and sheep supplemented with alternative diet and pasture fertilized with in natura castor bean cake. A randomized complete block design (CBD) was used, with 16 replications (sheep), with repeated measures over time, the plots being the treatments, and the subplots the collection times. Infective nematode larvae in the pasture (L3.g DM-1), number of eggs per gram of feces (EPG), globular volume (GV), and total plasma protein (TPP) were evaluated. For adult gastrointestinal parasite counts, CBD was also used with six replications. Except for FAMACHA© grade, all variables had effect (P < 0.01) of the time factor. The average number of L3.g DM-1 and EPG were 126 and 841, respectively, with no effect (P > 0.05) of the treatment factor. The values observed for GV and TPP were higher than 25.9% and 6.4 g·dL-1, respectively, which were considered normal. As organic fertilizer, the fractionated application of in natura castor bean cake does not reduce the contamination of pastures by nematode larvae. The evaluated feeds improve the resilience of the sheep to infection by gastrointestinal parasites. The treatments using castor bean cake reduced the adult parasites present in the abomasum of sheep.


Subject(s)
Parasites , Ricinus communis , Animals , Blood Proteins , Fertilizers , Larva , Ovum , Sheep , Urea
20.
Ned Tijdschr Geneeskd ; 1662022 05 23.
Article in Dutch | MEDLINE | ID: mdl-35736393

ABSTRACT

BACKGROUND: Intoxications by beans can have serious consequences. We describe 2 auto-intoxications using castor beans and jequirity beans with the toxins ricin and abrin, respectively. Both toxins have similar mechanisms of action. When taken orally, a toxic mucositis develops causing dehydration, gastrointestinal blood loss and multi-organ failure. Knowledge about pathophysiology is important for risk assessment and treatment. CASE DESCRIPTION: Patient A presented 27 hours after ingestion of the castor beans with frequent vomiting and watery diarrhea. Patient B presented 45 minutes after ingestion of jequirity beans without physical complaints. Gastric lavage and bowel lavage was started. The clinical course in both patients was mild. The severity of toxicity depends on how much the beans have been chewed and the amount of ricin/abrin per bean. CONCLUSION: Intoxications with ricin or abrin can be potentially serious. There is no antidote. Treatment consists of anti-absorptive measures and best supportive care.


Subject(s)
Abrin , Ricin , Ricinus communis , Gastric Lavage , Humans , Suicide, Attempted
SELECTION OF CITATIONS
SEARCH DETAIL
...